Exercise 2.1

Question 1:

Find the principal value of $\sin ^{-1}\left(-\frac{1}{2}\right)$

tuin Answer 1:

Let $\sin ^{-1}\left(-\frac{1}{2}\right)=y$, then $\sin y=-\frac{1}{2}=-\sin \left(\frac{\pi}{6}\right)=\sin \left(-\frac{\pi}{6}\right)$
We know that the range of the principal value branch of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\sin \left(-\frac{\pi}{6}\right)=-\frac{1}{2}$
Therefore, the principal value of $\sin ^{-1}\left(-\frac{1}{2}\right)$ is $-\frac{\pi}{6}$.

Question 2:

Find the principal value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
$\tan _{\mathrm{m}}$ Answer 2:
Let $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=y$, then $\cos y=\frac{\sqrt{3}}{2}=\cos \left(\frac{\pi}{6}\right)$
We know that the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$ and $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$
Therefore, the principal value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$.

Question 3:

Find the principal value of $\operatorname{cosec}^{-1}(2)$.
Eme Answer 3:
Let $\operatorname{cosec}^{-1}(2)=y$. then, $\operatorname{cosec} y=2=\operatorname{cosec}\left(\frac{\pi}{6}\right)$
We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$ and $\operatorname{cosec}\left(\frac{\pi}{6}\right)=2$.
Therefore, the principal value of $\operatorname{cosec}^{-1}(2)$ is $\frac{\pi}{6}$.

Question 4:

Find the principal value of $\tan ^{-1}(-\sqrt{3})$.

mew Answer 4:

Let $\tan ^{-1}(-\sqrt{3})=y$, then $\tan y=-\sqrt{3}=-\tan \frac{\pi}{3}=\tan \left(-\frac{\pi}{3}\right)$
We know that the range of the principal value branch of $\tan ^{-1}$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan \left(-\frac{\pi}{3}\right)=-\sqrt{3}$
Therefore, the principal value of $\tan ^{-1}(-\sqrt{3})$ is $-\frac{\pi}{3}$.

Mathematics

Question 5:

Find the principal value of $\cos ^{-1}\left(-\frac{1}{2}\right)$.

Eni Answer 5:

Let $\cos ^{-1}\left(-\frac{1}{2}\right)=y$, then $\cos y=-\frac{1}{2}=-\cos \frac{\pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)=\cos \left(\frac{2 \pi}{3}\right)$
We know that the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$ and $\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}$
Therefore, the principal value of $\cos ^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2 \pi}{3}$.

Question 6:

Find the principal value of $\tan ^{-1}(-1)$.

Euis Answer 6:

Let $\tan ^{-1}(-1)=y$. Then, $\tan y=-1=-\tan \left(\frac{\pi}{4}\right)=\tan \left(-\frac{\pi}{4}\right)$
We know that the range of the principal value branch of $\tan ^{-1}$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\tan \left(-\frac{\pi}{4}\right)=-1$
Therefore, the principal value of $\tan ^{-1}(-1)$ is $-\frac{\pi}{4}$.

Question 7:

Find the principal value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$.

Eus Answer 7:

Let $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=y$, then $\sec y=\frac{2}{\sqrt{3}}=\sec \left(\frac{\pi}{6}\right)$
We know that the range of the principal value branch of $\sec ^{-1}$ is $[0, \pi]-\left\{\frac{\pi}{2}\right\}$ and $\sec \left(\frac{\pi}{6}\right)=\frac{2}{\sqrt{3}}$.
Therefore, the principal value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$.

Question 8:

Find the principal value of $\cot ^{-1} \sqrt{3}$.
E Answer 8:
Let $\cot ^{-1} \sqrt{3}=y$, then $\cot y=\sqrt{3}=\cot \left(\frac{\pi}{6}\right)$.
We know that the range of the principal value branch of $\cot ^{-1}$ is $(0, \pi)$ and $\cot \left(\frac{\pi}{6}\right)=\sqrt{3}$.
Therefore, the principal value of $\cot ^{-1} \sqrt{3}$ is $\frac{\pi}{6}$.

Mathematics

(Class 12)

Question 9:

Find the principal value of $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$.

Euinswer 9:

Let $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=y$, then $\cos y=-\frac{1}{\sqrt{2}}=-\cos \left(\frac{\pi}{4}\right)=\cos \left(\pi-\frac{\pi}{4}\right)=\cos \left(\frac{3 \pi}{4}\right)$.
We know that the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$ and $\cos \left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}$.
Therefore, the principal value of $\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\frac{3 \pi}{4}$.

Question 10:

Find the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$.

tem Answer 10:

Let $\operatorname{cosec}^{-1}(-\sqrt{2})=y$, then $\operatorname{cosec} y=-\sqrt{2}=-\operatorname{cosec}\left(\frac{\pi}{4}\right)=\operatorname{cosec}\left(-\frac{\pi}{4}\right)$
We know that the range of the principal value branch of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$ and $\operatorname{cosec}\left(-\frac{\pi}{4}\right)=-\sqrt{2}$.
Therefore, the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$ is $-\frac{\pi}{4}$.

Question 11:

Find the value of $\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$.

Eum Answer 11:

Let $\tan ^{-1}(1)=x$, then $\tan x=1=\tan \frac{\pi}{4}$
We know that the range of the principal value branch of $\tan ^{-1}$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
$\therefore \tan ^{-1}(1)=\frac{\pi}{4}$
Let $\cos ^{-1}\left(-\frac{1}{2}\right)=y$, then

$$
\cos y=-\frac{1}{2}=-\cos \frac{\pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)=\cos \left(\frac{2 \pi}{3}\right)
$$

We know that the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$.
$\therefore \cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}$
Let $\sin ^{-1}\left(-\frac{1}{2}\right)=z$, then

$$
\sin z=-\frac{1}{2}=-\sin \frac{\pi}{6}=\sin \left(-\frac{\pi}{6}\right)
$$

Mathematics

(Class 12)

We know that the range of the principal value branch of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
$\therefore \sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}$
Now,
$\tan ^{-1}(1)+\cos ^{-1}\left(-\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$
$=\frac{\pi}{4}+\frac{2 \pi}{3}-\frac{\pi}{6}=\frac{3 \pi+8 \pi-2 \pi}{12}=\frac{9 \pi}{12}=\frac{3 \pi}{4}$

Question 12:

Find the value of $\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)$

Eum Answer 12:

Let $\cos ^{-1}\left(\frac{1}{2}\right)=x$, then

$$
\cos x=\frac{1}{2}=\cos \frac{\pi}{3}
$$

We know that the range of the principal value branch of $\cos ^{-1}$ is $[0, \pi]$.
$\therefore \cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
Let $\sin ^{-1}\left(-\frac{1}{2}\right)=y$, then

$$
\sin y=\frac{1}{2}=\sin \frac{\pi}{6}
$$

We know that the range of the principal value branch of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
$\therefore \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$
Now,

$$
\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}+2 \times \frac{\pi}{6}=\frac{\pi}{3}+\frac{\pi}{3}=\frac{2 \pi}{3} .
$$

Question 13:

If $\sin ^{-1} x=y$, then
(A) $0 \leq y \leq \pi$
(B) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(C) $0<y<\pi$
(D) $-\frac{\pi}{2}<y<\frac{\pi}{2}$

tew Answer 13:

It is given that $\sin ^{-1} x=y$.
We know that the range of the principal value branch of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Therefore, $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$.
Hence, the option (B) is correct.

Mathematics

(Class 12)

Question 14:

$\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$ is equal to
(A) π
(B) $-\frac{\pi}{3}$
(C) $\frac{\pi}{3}$
(D) $\frac{2 \pi}{3}$

E Answer 14:
Let $\tan ^{-1} \sqrt{3}=x$, then

$$
\tan x=\sqrt{3}=\tan \frac{\pi}{3}
$$

We know that the range of the principal value branch of $\tan ^{-1}$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
$\therefore \tan ^{-1} \sqrt{3}=\frac{\pi}{3}$
Let $\sec ^{-1}(-2)=y$, then

$$
\sec y=-2=-\sec \frac{\pi}{3}=\sec \left(\pi-\frac{\pi}{3}\right)=\sec \left(\frac{2 \pi}{3}\right)
$$

We know that the range of the principal value branch of $\sec ^{-1}$ is $[0, \pi]-\left\{\frac{\pi}{2}\right\}$
$\therefore \sec ^{-1}(-2)=\frac{2 \pi}{3}$
Now,

$$
\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)=\frac{\pi}{3}-\frac{2 \pi}{3}=-\frac{\pi}{3}
$$

Hence, the option (B) is correct.

